

Innovation & More Innovations Smaller, Faster, Cheaper, Less Power

1900 20th Century 2000

The Legacy of the Miniaturization Will Continue

Data Warehouse 2014

Power of System Integration in a Package

Indiana University Data Center. Bloomington, Indiana

2000 Jou are her

21th Century

2100

PCB Trends

System Integration in a Package

SiP PoP/PiP Stacked

MCM

2.5D/3D

1950

1970

1980

1990

2000

>2010

Electronic Circuits

2.5D/3D, MCM, PoP, MCP

SiP

Microprocessor

DSP

Application
Processors

Graphic Unit

Micro Controller

Data Gathering
Data Sensing
Data Distributions
(Audio, Video, Data)
Power, Power
Harvesting, Power
Management
Antenna/Switch/Filters
Frontend, MEMS, etc.

Interconnection with Software Layers and Security Protocols

Memory

Multichip Module (MCM)

- MCM increases system performance resulting from decreasing the length of wiring needed to provide interconnection between two IC devices
 - Lower parasitic and shorter lines than PCB board
- High end applications:
 - High end networking, gaming & computing
 - Military and aerospace applications
- Low volume with high price tag except for gaming
- Not well suited for consumer products

Multichip Package (MCP)

- Simpler version of MCM
- Lower cost, 2-12 bare die without passives
- Tighter substrate design rules
- Size reduction advantage
- Mature technology with solid infustracture
- Different packaging structures
 - Stacked die, Package-on-Package (PoP),
 Package-in-Package (PiP), F2F
 - Flip chip and wirebond

System Level Packaging (SiP)

- Packaging solution for system or sub-system integration
- Extend Moore's law
- SiP does not compete with SoC
- Emphasis on functional integration
 - Noise reduction, power reduction
 - Controlling EMI radiation
 - System miniaturizations
 - X,Y, Z dimensions
- Comes in different packaging solutions
 - 2.5D/3D, SiP, SiP-in-SiP, SiP-in-PoP, etc.
- System Level Packaging/ System Integrated Packaging
 - CMOS, GaAs, digital, analog, RF, passives components, crystal, MEMS, antenna, shielding, embedded substrates, etc.

Simpler Solution

Miniaturization: Passive Components

Integrated Passive Devices

Embedded Passives Substrate

Package Shielding for Wireless System

Package Level Shielding

> Traditional System Level Shielding

Design Methodology

	c	וטכ	ier	Hd	LULC	
LMEMORE INC.	a	FB755	NUMBER OF STREET	COMP	Mothera	o sungrounes
3N (201475A) TN	,	F8605	04/20147	oour	Maryera	Three Terminal Capacitor 9605 4.7uf 6.7V
811/196	Ξ	2000	38.7772380	OUNT	SKYWORK	TD-FA-3
80.8 08	ī	UU/04	8800838	COMP	NORTH L	ić Inansceiver,
WCP15WF104F01	1	1995	WCP15WF	DOWN	Muliata	100k Thermision for
		100e	UF1,13:3:001		Selection and	LOW PASS FILTER
Tri representati		10000	8T25200-2	11.00	Typorere	1CKD-26MHs-2.8V.
R077929-24		w904	BO177529	COMP	SKYWOKK	197-Enabled seed-
AWKS LOOK AN		W200	1440000000		Multiple	TD lim faut unhalans
WALLMOOD		100a	MONTON	-	Moreon	GSM RX SAW LB Sin
AWTO GRACADI	1	U305	SAWFOLG	COMP	Murata	COM RX SAW RB 3III
BRMP1JEJ	=	0800	885971302	COMP	NORTH	K. Processor, CP, TD
MINESOT .		W700	PARTIES	COMP		IC PARC, PARESCE
9Y2465		uans	DM2465	COMP	Paintellal	Load Switch Adjustable Corners
		U804	CANCILIA		Parabild	DC DC, BUCK, 3A, Voice0.8-Vin-0.9
26, 655, 77	٠.	H794	126 555.1	COMP	Seles	Crowlet 22 768006

BOM

Package/ Module Requirements Reusable Design

Design for Cost

Design for Test and Design for Manufacturability

Design for Performance

Electrical, Thermal & Mechanical

Size (X,Y, Z) Reductions

System Evaluation

Module Electrical Design

- Computing, networking and graphic modules are based on high performance "SoC" and high speed & high bandwidth memory such as DDR3 & DDR4
- Module success depend on its superb electrical performances with its targeted system
 - Signal speed and bandwidth (Terabit)
 - Low power and low noise requirement
 - Meeting end system signaling protocols

Current & Voltage Distribution Map (layer by layer)

Thermal Map (layer by layer)

System Integration Constraints

- Component and functional placements
- Component size, thickness, orientation, etc.
- Supply chain restrictions
- Noise and power budgets
- EMI radiation and susceptibility
- Manufacturability
- KGD availability
- **Testability**
- Cost and cost reduction
- Thermal performance
- Mechanical stability

Thank You **谢**物价

